



# Simulation of Real Photographic Phenomena in Computer Graphics

Benjamin Steinert May 4, 2009



## **Overview**



## Contents

# **Some Real Photographs**



# **Some Real Photographs**



# Some Real Photographs



# interdisciplinary Toolbox

- Optical Physics
  - Properties of Light and Units
  - Light Propagation and Interaction
- Optical Engineering
  - Lens Design
  - Glass Science
  - Aberration Theory
- Computer Graphics
  - data representation
  - physically based rendering
  - sampling
- Photography

#### Rendering fragmented into different concerns



- scene: acceleration structures, materials, sampling
- image: sampling, (post) processing

Page

## Contents

#### Thin and Thick Lens Model



(linear) Paraxial Optics - Gaussian Imaging based on

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$

- Thick lens has two planes to account for
- Transformation can be represented by a matrix
- many lenes can be coupled by a product of matrices

# What we Left Out

Page 1



Paraxial Optics fundamental law

 $\sin heta pprox heta$ 

• Aberrations are introduced by higher order contribution:

$$\sin \theta = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!} = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} \pm \cdots$$

- Ray transfer matrices cannot handle inner reflections
- Wavelength was not considered at all
- Aperture size and shape needs further test

## Contents

## **Previous Work**

- Kolb et al introduced usage of a fully modelled lens to a distribution ray tracing setting
  - Use of analytic primitves suggested
  - Sequence of surfaces known in advance
  - Sampling ideas

#### **Previous Work**

- Kolb et al introduced usage of a fully modelled lens to a distribution ray tracing setting
  - Use of analytic primitves suggested
  - Sequence of surfaces known in advance
  - Sampling ideas
- Material simulation of glass
  - Snell's Law
  - Fresnel Equations
  - Bougher-Lambert or Beers Law
  - Sellmaier Equation (dispersion)

#### **Previous Work**

- Kolb et al introduced usage of a fully modelled lens to a distribution ray tracing setting
  - Use of analytic primitves suggested
  - Sequence of surfaces known in advance
  - Sampling ideas
- Material simulation of glass
  - Snell's Law
  - Fresnel Equations
  - Bougher-Lambert or Beers Law
  - Sellmaier Equation (dispersion)
- Geometrical theory of diffraction introduced to graphics by Aveneau and Mériaux for scene account

# **New Setting**

| radius  | thickness | material | diam. |
|---------|-----------|----------|-------|
| 42.970  | 9.8       | LAK9     | 19.2  |
| -115.33 | 2.1       | LLF7     | 19.2  |
| 306.840 | 4.16      | air      | 19.2  |
|         | 4.0       | air      | 15.0  |
| -59.060 | 1.870     | SF7      | 17.3  |
| 40.930  | 10.640    | air      | 17.3  |
| 183.920 | 7.050     | LAK9     | 16.5  |
| -48.910 | 79.831    | air      | 16.5  |
|         |           |          |       |



- Integration of real lens data in a Monte Carlo renderer
- Continuous spectral evaluation
- Full consideration of Snell's Law
- Inner reflections are demanded
- Explicit modelling of the aperture

#### **Representation and Handling**

Page 15



- Spherical caps and planes as primitives
- ray passage through the lens in an isolated program region
  - Allows change of measure, coordinate system or even precision
  - Optimisation on glass materials
  - Trigger surfaces connect scene and lens tracer

## **Entrance and Exit Pupil**



- Image of the aperture on both sides forms pupils
- Entrance pupil defines acceptable irradiance
- Exit pupil identifies area of incoming irradiance contribution

# **Optical Vignetting**



- Cone of illumination can get cropped by lens dimensions
- Effective aperture is reduced
- Main challenges:
  - Entrance pupil area varies with pixel position.
  - Path construction by simply choosing a location on the back lens can be awfully inefficient

## Muller Fisheye example

Image of the aperture varies significantly, seen from different pixel positions



#### **Per Pixel Pupil Computation**



- For random points on the global exit pupil, evaluate paths from all pixels through the lens
- Record samples where the path reached the entrance side
- Estimate a per-pixel pupil from all positives

## Path Sampling



- Example shows an increase from 11% to almost 80% of ray passage probability.
- > Pupil shape and precision limits number of zero contribution paths
- Sampling approximated pixel pupil reduces variance significantly

# **Optimisations**

- Can be done in a precomputation step
- If lens is rotationally symmetric, only compute pupils for one quadrant and mirror results.
- Easy to parallelize
- Optimal pixel pupil makes aperture check obsolete and leads to 100% ► transmission
- Ideal for GPU computation

# **Progressive Rendering**



- Path pobability for an ES\*L path sampled from the sensor side considering inner reflections is disastrous
- But deterministic connect on the lens from the light source is easy
- Separate image formation in stages:
  - Do pass backward without lens reflection using pixel pupil sampling
  - Use forward path tracing to collect direct light.

# Lens Flare Results









## **Coating Effects**





- Adjust Fresnel reflection results by reflection rate of a coating at normal incidence.
- Unfortunately no "real" data available

## **Geometrical Theory of Diffraction**



- First nice thing, contribution is summable without any change of the rest.
- Fermat's Law modified
- Diffracted rays at an edge lie on the sufrace of a cone, representing all valid diffraction directions
- Diffraction coefficient derived by Aveneau and Mériaux used. Is only valid for a point "on" the edge. But probability to hit an edge in 3D space is zero...

# Keller Cone Sampling



- Check barycentric coordinates of hitpoint in the plane, whether we are close to the edge.
- When "hitting" the aperture edge, the diffraction direction needs to be sampled.
  - Choose sample on the base circle of the cone.
  - ► Take vector from *Q* through sample as diffraction direction.

## **Diffraction Results**



- Diffraction forms streaks perpendicular to the diaphragm blade edges
- ► Same efficiency problem as lens flare simulation has
  - $\rightarrow$  Computation in a Light Tracing pass again

# All together



## Contents

## Conclusion



- Lens Simulation extended to MC Light Transport Simulation
- Various effects without extra cost
- Lens Flares by progressive approach
- Diffraction by material implementation
- Telescope or microscope simulation directly applies

#### **Future Work**



- Pupil Sampling for Light Tracing
- Diffraction validity
- Barrel inclusion
- Sensor simulation
- Interference and polarisation

#### **Pinhole Camera**



- all rays through center of projection
- no physical motivation
- aberrration free, all-focussed infinite depth of field

# **Spherical Aberration**



## Coma



## Astgmatism

Page 35



## **Field Curvature**



## Distortion







# **Chromatic Aberrations**



#### Aberrations

- ▶ Snell's Law evaluation for every surface, is the only thing we need...
- But todays lenses are highly corrected for all defects















#### Not yet seen

Some aberrations hide each other and are only visible in certain situations. Astgmatism is very tricky...

















## **Coating Data**

